
Best
Available

Copy



AD-A283 892
iii. iii I | I N II I

PROCEEDINGS

THIRTY-FIRST ANNUAL ALLERTON CONFERENCE
ON COMMUNICATION, CONTROL, AND COMPITING

KDTIC
r LECTE

-i UG 3 0 1994
Dilip V. Sarwate
Paul Van DoorenF" ConfeCnD Co-CbuirS

Conference held
September 29 - October 1, 1993

Ailerton House

Monticello, Illinois

This documet hr.as b~en approved
for publi: release and saJe, its

distibUtion is unlimited.

ME- Sponsored by
I•-----'The Coordinated Scienc Laboratory

a) and
T"• Depaltmenl of Electrical and Computer Engineering

I • --- of the

_UNIVERSITY OF ILLINOIS

"Ida n=Urbana-Champaign

94 '8 '29 211

9 9 99 ~ 0 9



Formation and Agreement Problen s for •

Anonymous Mobile Robots'

Ichiro Suzuki Masafumi Yamashita

SDepartment of Electrical Engineering and Computer Scete~tt
U niversity of Wisconsin-Milwaukee, Milwaukee, WI 53120!

S[}eparttnett of Electrical Entgtneerintg, Faculty of Ettgitterittg
Hiroshfima University, Higa~shi- Hiroshima 7"24, Japan

Email: suzukie, cs.uwm.edu, rnak~se.hiroshuiia-u~ac.jp 3

Abstract A system consisting of multiple mobile robots in which the robots cart see each
otber by their eye sensors but are not equtipped with any communication system, can be vie.,etdl

as a distributed system in which the components (i.e.. robots) can "communicate" with each
other only by means of their moves. We use this system to investigate, through a case study
of a number of problems on the formation of geometric figures in the plane, the power and3

limitations of the distributed control method for mobile robots. In the distributed control
method, at every tick of its local clock, each robot observes the positions of all the robots
and moves to a new position determined by the given algorithm. The robots are anonymous

in the sense that they all execute the samte algorithm and they cannot he distinguished hy
appearances. The local clocks of the robots are not necessarily synchronized, and initially, the
robots do not have a common x-y coordinate system. The problems we (discuss include (I) !
converging the robots to a single l-.:nt, (2) moving the robots to a single point. (3) agreemtent 3
on a single point, (4) agreement on the unit distance, (5) agreement on direction, and (6) leader
election. We develop algorithms for solving some of these problems uinder Va, otis conditions.
Some impossibility results are also presented.

1 Introduction

In the last several years, interest in the distributed control mtethod for multiple tiobile robot.V

has increased considerably 11, 2, 5,7]. The main idea of the method is to let each robot execute
a simple algorithm and determine its movement adaptively based on the observed mtovetment of

other robots, so that the robots as a whole group will achieve the given goal. Th,s approach has i
been shown to be very promising for the generation of certain patterns and collision avoidance.
In the earlier works on distributed robot control, the main emphasis is on the developtmentim

of heuristic algorithms for various probletns and the presentation of simulation results, and in
many cases, formal discussions on the correctness and performance of the algorithms are not
given [II 151.

A robot system in which the robots can communicate with each othei by radio, such as
a systenm of radio-controlled vehicles or spaceships, can be considered as a distributed systett
whose communication topology is a complete graph. Therefore, such systems can be analyzed
using the standard techniques developed for distributed computing systems (although such

analyses are by no means easy). In this paper, we consider a system consisting of mtultiple

"This w.ork wusupported is part by the National Science Foundation under g~rants tCR-9004346 *nd lIRI
5307506
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ioiobi!e .zbots n which the robots can see each other by their eye sensors, but they arer not
equipped with any communication system. We view this system as a distributed system in which

the components (i.e., robots) can "communicate" with each other only by means of their iloves

Clearly this system is a suitable model for studying the distributed control method mentioned

in the previous paragraph. As the reader might expect from the assumptions we make about the

robots below, the study reveals delicate interplay of a number of key concepts of distributed

computing, such as synchrony and asynchrony, communication, termination detection s.elf

stabilization, anonymity of processors, and knowledge (in a casual sense).

A basic problemu for such a robot system is to design an algorithm such that, if all the

rTLbots execute it individually, then the robots as a whole group will eventually forri the given

geometric figure, such as a circle and a line segment [3, 5, 6[. The main goal of this paper is

to present some theoretical results related to this problem. The results presented here provide

useful insights that will help us to answer certain fundamental questions, such as whetiier the

given algorithm really solves the given problem and, for that matter, whether the given problem

is solvable at all in a strict sense by a distributed algorithm. This work is a step toward the

ultimate goal of determining exactly what class of probletir are solvable in a distributed ianner.

We assuiie that each robot is a mobile processor having an eye sensor which, at every tick

of its local clock, observes the positions of all the robots (including itself) in terms of its own

local z-y coordinate system, a-nd moves to a new position determined by the given algorithm.

To simý!ify the discussion, in this paper we assume that a robot can move to its new position

instantaneously. This assumption helps us to bring out the fundamental issues of the problem,

and still, many of the techniques and results we obtain for this simplified case seem to apply

(with sonme modifications) to the case when the move of a robot is not instantaneous. (We plan

to report on the noninstantaneous case in a future paper.)

The robot (or the algorithm it uses to con. "ite the new position) is oblitious if the new

position is determined only from the positions ol the robots observed at that time instant.

Otherwise, it is not oblivious, and the new position may depend also on the observations made

in the past. The local clocks of the robots are not necessarily synchronized, i.e., they tmiay tick

at different r.,tes. It is assumed that initially, the robots do not have a common z-i coordinate

system. So tb- local z-y coordinate systems of two robot may not agree on any of the following:
the location o& the origin, the unit distance, and the direction of the positive z-axis. Finally,

we assume that the robots are anonymous, in the sense that they all use the same algorithii

for determining the next position, and the- cannot be distinguishea by their appearances This

implies, for example, that depending on what movements are allowed, a robot that observes

other robots at two consecutive clock ticks may not be able to tell which robot has moved to

which position between the two ticks.

Under these assumptions, we first consider the problem of converging all the robots toward a

single point. (The process of convergence need not terminate in finite steps.) Note that since the
robots do not have a common z-y coordinate system, we cannot simply use an algorithm such as
"move toward point (0,0)". For this problem, we give an oblivious algorithm and then discuss
the subtlety of the problem by showing how certain minor changes in the algorithm or the

assumption affect the possibility of achieving the goal. Also, we show that the set of geometric

figures realizable by any deterministic algorithm must necessarily include the configuration in
which all robots are located at te same position.

Next, we investigate the problem of having the robots agree on a common z-y coordinate I
system. Clearly, such an agreement can greatly reduce the complexity of subsequent motion
coordination algorithms. The problem consists of three subproblems, agreement on the origin,
agreement on the unit distance, and agreement, on the direction of the positive z-axis We
first consider a related problem of moving two robots to a single point in finite steps (such a

problem is called a formation problem, in contrast to a convergence problem) and -how that
this problem can be solved by a nonoblivious algorithm but not by any oblivious algorithm
(The corresponding convergence problem can be solved by an oblivious algorithm, as we stated 1/ Cocles
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2. repeat
1. Wai t until c, ticks; Let k be the new value of c,;

/ Start Move Action "/

4 Let P, be the multiset of positions of the robots, excluding r, at local time k,
given in ternis of Z,;

I I U {(p,k))IPE P,) U I{(p% k)}, where p is the current position of r;

6. Randomly select an element q from *P(I);
Move to q;
/* End Move Action /

W until forever

Figure 1: Behavior of robot r.

above.) Since two robots can agree on the origin if they can move to a single point, this result
shows that agreement on the origin for two robots is solvable by a nonoblivious algorithm
Mo,•.Jver, we bhow t w• r .weeeivnt ýn *0- ,;n -; e vble ,y A nnoblivious alworithim even

for the case n > 2, where n is the number of robots. We also show that agreement on the unit
distance is solvable by a nonoblivious aJgorithm if either n = 2, or n > 2 and no two robots are
"clones" (to be defined later) of each other. On the other hand, we show that agreement on
direction is not solvable even if n = 2 and the clocks are synchronized. This last result shows
that the robots cannot agree on a common z-y coordinate system in general.

Finally, we consider the case in which the robots have a sense of direction (i.e., the direction
of the positive z-axis is the same for all robots). For this case, we show that the robots can agree
on a common z-y coordinate system and elect a leader, provided that no "clones" exist. We
can show that once a unique leader is elected, the robots can be moved to form any geoimetric
figure.

It can be shown that if the local clocks are synchronized, then the robots can easily coin
municate with each other by means of the distances of their moves, once they agree on the
unit distance. Therefore, many problems on synchronized robot systems can be reduced to
the corresponding problems on anonymous complete networks, and can be analyzed using the
techniques developed, for example, in [8]. Details can be found in the full paper

We present necessary definitions and basic assumptions in Section 2. Section 3 discusses
the problem of converging the robots to a point. Agreement on a common coordinate system
is discussed in Section A. In Section 5 we consider the case in which the robots have a sense of
direction. Concluding remarks are found in Section 6. In this abstract, we present only the key
ideas. AU the details and the missing proofs can be found in the full paper.

2 Definitions and Basic Assumptions

We briefly formalize the problem described in Section 1.
A robot r is a mobile processor with sufficiently large memory space, an artificial eye sensor,

a local zx- coordinate system Z_, and a local clock c,. The behavior of r is given in Figure 1.
Local clock c, is an integer counter whose contents, initially 0, continue to increase by I (i.e.,
the clock "ticks") at infinitely many (unknown) real time instants. We assume that at real time
0, r is at the origin (0,0) of Z,, executes line I instantaneously, and waits (in line 3) for its local
clock r, to tick and reach the value 1. The robots have no access to real time. The symbol /.
called the confilgurutmon of the memory of r, is a multiset' containing elements of the form

'For simpbocu, we assume that a robot is a point, and hence two or more robots can occupy the same posttsoi
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I (p, k), where p is the position of a robot other than r that r observed it local time k, and

2. (p, k), where p is the position of r at local time k.

llc;e, p is given in teriis of Z- The fNu, ion V, (line 6) is called an algonithn for r, where for
each configuration I, V,( I) is the set of possible next positions of r (given in terms of Z, ) when
r "knows" I. If 0(1) is a singleton for all I, then V) is said to be detcrnminstic. Otherwise, rrandomly selects its next position from V1(J) (line 6), and hence i is a randomized algorithii.
The fact that I contains elements of the form (p,k) indicates that r always knows its current
position in terms of Z,. Also, note that I contains only the positions of the robots that r has%observed. So r never observes, for example, the velocity of other robots. Note that the robots
are anonymous in the following sense: (1) the initial configuration 0 and functioi, Vi are coniiion
to all the robots, (2) the identifier "r" of robot r is not an argument of V,, and (3) P, contains
only the positions of the robots (but not their identities).

We assume that different robots may have different coordinate systems, i.e., Z, ý Z, for
some robots r and s. Local clocks of two robots are said to be syrnchcortizcd if they always ticksimultaneously; otherwise, they are asynchronous. Unless otherwise stated, we assume that the
local clocks are not necessarily synchrro,,zed. ThercL,;e, even though all the robots execute line
I at real time 0, they may not execute line 4 for the first time simultaneously. This means thatthe robots may not be able to obtain a consistent view of their initial distribution. In fact, wewill see that the difficulty of obtaining a consistent view of the system is a source of some of the
technical problems in designing correct algorithms. For example, if all the robots know that
they can observe their initial distribution simultaneously, then they can adopt the center ofgravity of their distribution as the common origin, and the minimum distance oetween any two
robots as the common unit distance. So the robots can move to a point on the circuimference
of the uni: c,;c!e centered at ,;,e origin, and form an approximation of a circle.

Robot r is said to be active when it executes lines 4-7; otherwise, it is inactive. By the
definition of c_, r becomes active infinitely many Limes. As we stated in Section 1, we assume
that a robot can move to any position instantaneonsiy, and thus the time it takes to execute
L.- 4-7 is negligibly small.

Using this framework, it is possible to discuss the situation in which some robots are addedand/or removed from the system dynamically. This can be done by assuming that a robot
becomes visible (or invisible) when it is added (or removed) from the system. Under this
assumption, all the algorithms we present in this paper can easily be modified to work correctlyeven if the number of robots changes a finite number of times. (See the full paper for details.)
Algorithms having this property can be viewed as self-stabilizing algorithms, since they solvethe given problem in the presence of transient failures. This is an advantage of the distributed
control method. In the centralized method, the entire system can crash if the robot controlling
all other robots becomes faulty (and is removed).

Fix an r-y coordinate system Z. (The robots have no information on Z.) Let x be apredicate over the set of multisets of points (given in terms of Z) that is invariant under any
motion (i.e., rotation and parallel transformation) and uniform scaling. For exaimp~e, x height
be true if" the given points are on the circu,.ference of a circle or on a line segment. For such ;r,we consider two types of problems, the convergence problem and the forrnatio, problem. In theconvergence problem, the goal is to design an algorithm 4, such that, if all the robots executethe instructions using 0r, then the positions of the robots converge to a multiset of points (with
respect to the absolute coordinate system Z) satisfying r, regardless of the initial distribution
of the robots. The formation problem is similar, except that the robots must reach soiie points
satisfying r in finite steps. Since the robots have no knowledge of the coordinate system Z, all
we can expect istoe so to h the roiot covrg.o or form a figure which is similar to the given
wme etu.yý If rbot h ve the roboýt lcoe to o form fig re whih ist psitm top, the I vhen: ~conewti (F,k) for e~ch of re and r•
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goal figure. The restriction on r stated above was introduced for this reason All predicates we
discuss in the following are assumed to satisfy this condition.

3 Ct-nverging to a Point

Define a predicate ir,,,, by xpo.(pt,..., p,,) = true iff p, ý p, for any I <_ z, -< YL, where
n > 2 is the number of robots. In this section we discuss the convergence problem for r,,,
whic. 'we call POINT. That is, POINT is the problem of converging all the robots to a single
point. We present three correct oblivious algorithms and one incorrect algorithm. All of these
are deterministic algorithms. We also discuss a limitation of deterministic algorithms.

'timr first algorithm, , simply moves each robot r to the midpoint of its current position
and the position of a robot that is currently furthest from r. Formally, let p" and P. be the
current position of r and the multiset of positions of all other robots at local time k, respectively,
as in lines 3 and 4 of Figure I. Since ¢',,,,. is obliviois, "Vp.,l(I)" can sinmplv be written as
" , Then V,,,_,(P,,p') = ((p" + p)/2}. where p is any of the points in P'r furthest
fromt p

Theorem 1 Function V'J,,i corrcctly solvcs problem POINT.

Outline of Proof For any real time t, let S(t) be the set of positions of the robots at i Then
it suffices to show that CH(S(t)) converges to a single point as t goes to infinity, where CI1
denotes the convex hull. Suppose this is not the case. Since CH(S(t)) 2 CH(S(t')) for any
real times t and I' such that t < t', CH(S(t)) must then cot vergc to a convex polygon C. This
implies that for any small real number 6 > 0, there exists some real time t o such that for aiy
t > to and any corner v of C, there is at least one robot in the 6-neighborhood of v (denoted 6.).
If 6 is chosen sufficiently small, then any such inactive robot must eventually (become active
and) leave 6., since the robots that are furthest from it are located near the 6-neighborhood of
some other corners of C, that are more than 36 away from v. So, for CtI(S(t)) to converge to
C, some of the robots, say r, must enter 6,, repeatedly. However, since 6 is chosen sufficiently
small, this is possible only if there already is a robot in 6,, when r chooses a robot furthest from p *
itself. Cleariy this is impossible. 0

Let us modify , and use point p (the point in P, furthest from p') instead ot (p" +p)/2
as the next position of r. That is, robot r moves to the position of a robot furthest froit
itself. This function does not solve POINT, since of there are only two robots and their clocks
are synchronized, then they simply continue to exchange their positions. In fact, using an
argument similar to that in the proof of Theorem 1, we can prove the following theorem. Let

•.,n(P•,p') = i{bp" + (I - b)p), where b is a constant real number.

Theorem 2 ' Function V1p,, correctly solves problem POINT iff 0 < b < 1.

Another possible algorithm for POINT is function ,,,l 2(P.,p') = (g}, where g is the
gravity center of p" and the points in .'. (We can prove its correctness using an argument
similar to that in the proof of Theorem 1.) Note that if the local clocks are synchronized,
then it can solve POINT in one step, sinc- all robots simultaneously move to 9. However, if
the clocks are not synchronized, it is not clear whether or not 'po,,.,2 can solve POINT more
quickly than vP,_o, in general.

Function •Op-9(P ) {(p" + 9)/2), where q (ý p*) is a point in P. closest to p*, moves
robot r to the midpoint of r and a robot nearest to r. This function may seem to be a better
algorithm than , since finding a nearest robot can be easier than finding a furthest one.
Unfortunately, 0'pe,,,13 does not solve POINT. To see this, consider the case of four robots

'The theorem is partially smggested by Saito141-
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i i
rc,r2, r 3 and r 4 in which initially, r, and r7 (or r 3 and r4) are close to each other lut rt and r3

are far apart, Then, r, and r2 (or r3 and r4) converge to a point, but since this process never

terminates in finite steps, the four robots never converge to a point.

The next theorem 5z.ates that any problem solvable by a deterministic algorithm is actually
solvable by an algorithm for POINT, such as 0"-,

Theorem 3 Let ir bc a predicate which invariant nr.der any motion and similarity Tlcil
there is a dctcrininistar algorthin for solving the convergence problem for T if and only if for
any P, xro,,,(P) imnplirs r(P).

The proof of Theorem 3 uses the fact that "clones" remain indistinguishable forever, where
two robots r and s are clones of each other if they have the same coordinate system (and
thus by assnmption, the same initial position), and their local clocks are synchronized. In the
following, we assume that no clones exist.

4 Agreement on a Coordinate System

in this section we investigate the problem of obtaining a common coordinate system, where the
goal is to let the robots agree on the origin, unit distance, and direction. If the robots have
a common coordinate system, then a special leader robot can be elected (if necessary) that
controls all other robots. It turns out, however, that agreeing on a coordinate system is not
possible in general. Specifically, we show that, while it is possible for the robots to agree on
the origin and unit distance, agreeing on direction is not possible in general. We also discuss a
limitation of oblivious algorithmis.

4.1 Agreement on the Origin

We call the problem of agreeing on the origin ORIGIN. We first consider the formation problem
for two robots, called MEET, for predicate i,.,.,, introduced in Se'tion 3. The goal of MEET is
thus to move two robots to a single point in finite steps. Recall that function , of Section 3
solves the corresponding convergence problem for any number of robots. We have:

Theorem 4 There is no oblivious algorithm to solve problem MEET.

Outline of Proof Consider robots r and s. Suppose that there is an oblivious algorithim V,
that solves MEET. We first observe that, regardless of Z, and Z,, there must be positions p
and q (given in terms of Z) of robots r and s, respectively, such that, from that coufiguration.

', moves exactly one of r and 3 to the position of the other. (If this is not true, then by
changing the rate of their local clocks carefully and using the fact that ', is oblivious, we can
obtain an infinite sequence of moves that never brings the robots to a single point.) Now,
consider an initial configuration in which, in terms of Z, r is at (0,0), 3 is at (1, 1), Z, = Z.
and Z, is obtaiied from Z, by translating its origin to (1, 1) and then rotating it about (1, 1)
f,3r 180 degrees. Then the situation looks identical to both r and 3. Thus even though ', may
not be deterministic, all future configurations can look identical to r and s, if their clocks are
synchronized and they always move in the same (symmetric) manner. So it is possible that
they never reach a configuration in which ', moves exactly one of r and s to the position of the
other. This is a contradiction. (3

On the other hand, we can show that there is a non-oblivious algorithm, called , for
solving MEET. Instead of describing V,,,• formally, we explain the behavior of a robot that
executes it.

Algorithm 4w,,,: When robot r becomes active for the first time, it tests whether the other
robot 5 is at the same position as itself. If so, then r does not do anything. Otherwise, r rotates
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its coordinate system Z, about the origin so that s is #-n the positive y-axis of Z,, say at (O,a)
(By ,.&sumption, r is at (0,0) of Zr.) Then it moves in the positive x direction of Z_, over any

nonzero distance. It then continues to move in the same direction whenever it becomes active,
until it observes that the position of a has changed twice.

Now, r knows line e that contains the trajectory of 3. (Note that by symmetry, t is the
.- axis of s's coordinate system Z..) Ift! is parallel to the x-axis of Z_, then r moves to (0, a/2).

Otherwise, r moves to the intersection of F and the x-axis of Z_. 0

Theorem 5 Fucrctio , , corrcctly solfcs problem MEET.

Outline of Proof The key observation is the following: When one of the robots, say r, ob-

serves that the position of s has changed twice, s must have already observed that r's position

has changed at least once, and thus x knows where the x-axis of Z, is Sim;lorly, , will know
that r knows where the z-axis of Z, is. Now, it is easy to show that the trajectory of r (i.e., the
z-axis of Z,) and the trajectory of s (i.e., the i-axis of Z,) are parallel iff r and s become active
for the first time simultaneously. Also, if they become active for the first time simultaneously,
then each Y.'rot has seen the other robot when it was at its initial position. So if the two
trajectories a.- parallel, then they move to the midpoint of their initial positions. (They know
where that point is.) Otherwise they move to 'he intersection of the two axes. 0

Note that in , both robots know the position where they meet before reaching there
(This is not true for the algorithms in the previous section.) Thus 0_,,,1 solves ORIGIN for two
robots, except in the case when the robots have the same initial position. In this case, neither of
the robots ever moves, and thus they will never know whether they have reached an agreement.
We cope with this problem by using additional instructions before V,.,: Each time r becomes
active and finds that the other robot s is at the same position as itself, it moves over distance
I in the positive x-direction of Z,. (Robot s moves in a similar manner, using its local clock c,
and coordinate system Z,.) Then, using the assumption that clones do not exist, we can show
that eventually, r and s will occupy different positions. Then each of them starts executing

0,, when it becomes active again, and eventually they both move to the same position (and
agree on the origin). So ORIGIN is solvable for ,L = 2.

Now, we describe an algorithm , for ORIGIN for the case n > 2. Before we apply
•,i•,, we use another algorithm ¢o,11, to transform the given initial distribution of the robots

into one in which (1) no two robots occupy the same position, and (2) the robots are not located
on a single line segment. Algorithm t consists of two parts. Part I moves all the robots
to distinct positions, and is similar to, but more complex than, the scattering process we used
for 0,_i. (We can prove ;ts correctness using the assumption that no clones exist.) Part 2
assures that the robots do not form a single line segment.

Algorithm Vw•mmw

Part 1: Suppose that robot r becomes active and finds that not all robots occupy distinct
positions. (Otherwise, Part I is over.) Let P, be the positions of the robots that r observes,

given in terms of Z,. (1) If no other robot is located at the current position of r, then r does
not move, until it observes that all robots occupy distinct positions. (2) On the other hand, if
m > 1 other robots are located at the current position of r, then r finds the distance a. > 0
to its nearest neighbor (excluding those at the current position of r), and comp'ites the value
6, m cf(a,)/2, where for z > 0, f(z) = I - 1/2' is a monotonically increasing function in the
range [0, 1). Then r moves over distance b,/2 in the positive i-direction. After that, each time

r becomes active and finds that there are still m other robots at the same position as itself, r
moves over distance b,/2k in the same direction, if this is the k-th move (k = 2,3,. . .). When
r eventually becomes active and finds that there are fewer than m other robots at the same

Position as itself, r repeats this entire procedure trom the beginning of (2), using a new value
of a, (and resetting k). This process is repeated each time r finds that fewer robots are located
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at the same position as itself, iintd no other robot is found to oriupy the saule position .as r

Then r waits, without moving, until all robots occupy distinct positions.

Part 2: (At this mottent, all the robots occupy tist~act positions.) Suppose that robotr

becoites active and finds that the robots are lr.-ated on a single line segment. (Otherwise
Part 2 is over.) If r is located at an endpoint of the segment, then it does not move If ris not

at an endpoint, then r tmoves over any distance in the direction perpendicubir 'o the segrient

(As soon as some robot does this, the robots 5.. longer form a single line segment, and of co urse,
all the robots occupy distinct positions.) 0:

One technical difficulty is that in generalI, a robot cannot determine, given the pos~tions oif

the robots observed at two time instants tt and I,, which robot has moved to which positiion

between It and t,. We overcotte this problett by itiuposintg a bou~nd on the ilaxilllilisi distarice
that any robot can tiove while other robots are inactive, so that the robot at position p at titie 9

tI Uust be at the position closest to p at timle t2. Specifically, when robot r becotnes active for
the first time, it miemorizes the distance a,. > 0 to its nea~rest neighbor. Then riioves at uiist
distance a,r/ 2 k in the k-th utove, where 0 < • 1/'2 is a constant chosen by the algorithit This
restriction a-ssures that r remains in the interior of the ia,t-neighborhood of it• initial position
Since the interiors of such neighborhoods of :wo robots located at different positions do not
intersect, any robot can correctly know the position of r, even after it remains inactive for a
long tune. In Part 2 of ¢,,• we used a similar technique to prevent two robots located at
different positions from moving to the same position.

Algorithmr •',,,e,., is given next. Each robot first executes algorithmt tii,o,,, and then starts
executing t/o,, as soon as it finds that (I) no two robots occupy the same position, and (2)
the robots are not located on a single line segment. So in the following description of ,~,•..
we assume that these two conditions are already satisfied.

Algorithm tb•,,,,,: Let I', be the positions of the robots that r observes when it becottes '

active for the first time (alter finishing €ot) ,Robot r finds '.he distance a, to its nearest
neighbor. If r is not at a corner of the convex hull CJJ(P,) of the points in P,., then r itnettorizes
the current position p of its nearest neighbor, and mroves towards p each titme it becottes active,
staying in the interior of the (a,/2)-neighborhood of its initial pos~.•ik. {'See the explanation
in the preceding pa.-agraph.) Suppose that r' is at a corner of C'H(P4), and let a, b, c anil d
be consecutive corners in clockwise order, where r is at 6. Then r memorizes the direction that
is away from a along the line containing ab, and moves in that ditection each time it becottes
active, staying in the interior of the a,.v-neighborhood of & for some n < 1/2. Here, ..• chosen
so that the asr-neighborhood does not intersect the line containing c--. (This assures that the
robot s a" corner c remains to be at a corner of the convex hulls of the new positions of the
robots even after r and a move.)

Roboit rcontinn-• t.• ii,•,,, a~s desc~ribed above, until it observes that the position of each
S~robot has changed at least twice. Then, r knows line 4, containing the trajectory of a for each

robot .t a corner of the initial convex hull. Since the convex hull of the initial positions of
the robots is a k-sided polygon for sonie k > 3, the lines (4)} determine a unique, stmallest
convex polygon Q that contains the initial convex hull. So r chooses the center of gravity of
the corners of Q as the (common) origin. 0

We can show that using g',9,,, every robot eventually knows th, l'e,"- j tuo

the common origin. We must still mo,,e such robots, however, in order for other robots rto
' know that they have become active sufficiently many times and observed c's niovetnent ) So

Algorithm g,,, .solves ORIGIN for n > 2.
The following theoremt summarizes the discussion given above,

Theorem 6 ORIGIN ta* solvable for arny ri > 2.

[ IO100
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4.2 A ecrven'i~e't I'll tite' UnJit D~istance

Wee call the pr,,bleer, ef agreeineg onl the tiret lista (c'NIDS FoJ[)5' r the'r2, i'i 2

shrew that I, ',.,, each (i robots r and ir -e'nturall finds the initial pre'etien of the e'ther,

I'here they, lari li- e' I,'istance between their initial po~sitions as the init diestanCC IFor the' ie
I, ,. rthe ' au ,hoeese, L, tho- rmnrr h~tameC the length ifda 'horte-t -J,d if the k le

rCC 1101" Piele',/,inr thett theyV ,dlrain'lwd sit .drl,''rthui y N 'in eC h."..~'S

'I' eoer r' i 7 1 1'1lil/.S I' a, ::oleciblý f,e, -or r 2

4.3 Agreve'rie'rit on Dizrertionr

tonecall th,' ereileiri D~I It H(1ION

Theoereme K l Ic, wr aienlgor-al..ier fern -h-;q''r fr///,e( '10N, tir ce fe, !~rr toldOl 1-v ai ,ee 1-

r,(Outline oef [Peroof Cornsider tworCoiCtsr, and se mh that (I1) Z, Cs eritaineel fmir,, Z, bry reetatireg
fr a rt for I.'M de'grees albenut the orirgin,. and (2) the lorcal C leeks Cf r andi are, vnyrer rneizee 'l her,

,d a it Cs pCC.srlrble that , anti , tiCoe in thre sare''srC~recetricf manner all the tirree aCCC thCus whe,C

rlecirles the lirrectioen Cf itS positive r axis. , rhrroses the CoppCosite 'iC cctu,, lio eo it, pltCCi ic

tIrt I 2)5

Noiete that -r wee setated Cin Sectiron 2, the, L'hi-r tile agreerrent Crorblemrrr ire trlsIAllY s.elailei

if the i-~al i irrs Aree synchronnizede

5J Roboets with a S neof D~irection

* r::e's 'eWe ,a, that thire reoborts have a sense eef elire, tire, if they Agree' -en the- lire, lt ,er .fi tire' presetive

tieC. ~r ax' irI e' rrrari result ref this sectioen t,; the' frellewine'

'l. rI 'rTh e.reem 9 .7 b,, enehuet /aer e res-, d, ter .... 11itirii, 5 creey cjee ay r, icererirrr eeu chn te

teat Sstcerr. airid tleo' a Icad.ri

-en Althoriih the first cla.,,e fiollows ittier i' iate'lv freree the dI~cscsseiees err (rIoer treer 1 ArI a
t he 4.2, in thre frill paper we shrew that the foellowieng algeerithin, calledl ,leedeee.silve.s hothc the
fthe Coordinate agreemcent problem and the leadler electiorn problem, if the roborts have a sense err

directione As ibeforer, it is assuedeer that we' first rise C'eee sri that err, t-e roboerts well Ceceijles
each hie arrre I -onrr

each

eM o Algorithm V'eedeee2We only give aleeroutlunee. (We rise 'ea-st" tee rdenote the Poesitivex

dclest elirec tion. e'tc ) T he idea is to chorose the heorizorntal line though the errort hern CCCeos t robots as'
ty of the cocimon rem axes, andc thle vertical line the righ tire eaLstern meos t reobort% as thle commo ncn y ase,

Toe achir ,r.Kel ( I) eacl. eS,rtereeeee,, foeb-e 1,114t IS I-et i:i' o ee'r ; !- e-ntoiece to I�

T'he norrth wet hrt nA "siCall" neigh borhodctit reits Cinrteial poesiteon (a,% en pl areel i e Sectieon .1). a,, I
rtain (2) all eothler roboiets con tin ue to moeevee we'st (if there is a reihot that CsI, bothc eastern eerist andi

Ito northern moecst, then it first nones to a pine~t tee tire Soueth ief any reoboet that is eAstern i-erest,

ISo and there dices (1I).) 'rhen eventually. enery rocbot knows the trajectories ref .0
1 

either robort!,,
and chcrrses the noirthern . econt (or eastern mrost) trajectory as the coemmocn x (eer y- I axis.irhe

unit~ elstance rs then chosen to be the mrinrimume, distance > 0) between any twoe westbouind (I f'
hrorcizontall t rajecterries '[he leader is the' northeern mos ,t reel,, t ACern g the e'as tern m~ost reel: its

I 0I

0I



0

Srole the leaid'r farn o(,pute the fi; p. ,torjn f jd the robot, that satify anv giv.r,

preifi ate and "guide" thein to their res;p,_ toe, final pistutls we obtajn the fll•o)wing th-r,n

Detatls wiIl f. found in the full pape.r

Theorem 10t If the rob>ts have a sense of ,irrertoir then for atny prjtdteatr it the r'eeyerir

arid forirrirtion prblerri, for ir is solvable

Il partli ilar. we have

Corollary I If th, robots hav- a scus, of direro rt, then 1h1 prroblcrri. of for-ruinq a ir r, arid

* a rIe seqrniet ere solvabie

6 Concluding Remarks

,' viewed a group of nobile robots as a distributed systeu in which the ,inpo.niints fair

Siniiningii ate with each other ornly by means if their mioves, and in vestateilhed he v pvsibihty aind

inpossibilmty o1f slving somne of the problems related to the foirmation of .muetrtc fitures tn t0i

plane Our study indicates that the assumptions we mnake on the knowledge anti (aiiA,:e,1s

of the robots can affect the difficulty of solving the given problem in a subtle way We are

, irrently conducting sinilar investigation2 o, I i ) randomized algorithms, (2) the (ase in which

,he inotion of a robot is not instan taneius, anti (:) the 1 d imensional rase The revuilt, will 1-

re.ported in A firture paper
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